
Implementing ArrayLists

In Lab 2 you will implement the following class:

public class MyArrayList<E> extends AbstractList<E> {
private E[] data;
private int size;
….

This represents a list structure that stores its data in
an array.

Question: After you create the class
public class MyArrayList<E>

how will you declare and construct a new MyArrayList of
Strings?

A. L = new MyArrayList<String>;
B. MyArrayList L = new MyArrayList(String);
C. MyArrayList L = new MyArrayList<String>();
D. MyArrayList<String> L = new MyArrayList<String>();

Answer:

D. MyArrayList<String> L = new MyArrayList<String>();

Of course, arrays are fixed-size and lists aren't, so
an essential part of your implementation is a
method

private void resize()
that makes a new array A twice as long as the
current data array, copies the elements of data into
it, and then makes the data variable be this array
with the assignment

data = A

Any method that adds data into your MyArrayList
structure needs to check that there is room for the
new data, and if there isn't to make room for it by
calling resize().

You need to implement the abstract methods in the
AbstractList abstract class. These are

• constructors new MyArrayList(int initialSize)
and new MyArrayList() which uses initial size
2.

• int size() which returns the number of
elements currently in the list

• void add(E element) which adds the new
element to the end of the list.

• void add(int i, E element) which adds the new
element at position i, shifting everything from
there on back one slot to make room for the
new element.

• E get(int i) which returns the ith element of the list.
• E set(int i, E element) which changes the data stored at

position i to the new element. It returns the value
previously stored at position i.

• E remove(int i) which removes the ith element from the
list and then returns it. Remember to decrement the
size. Also, shift everything above index i down 1 entry.

• boolean isEmpty() which just says if the size of the list is
0.

• void clear() which empties out the list. This needs to
allow for garbage collection, so set all of the entries of
data to null. Remember to ensure that size=0.

Many of these methods are supposed to throw
exceptions, so your code needs to do that. For
example, get(i) throws an
IndexOutOfBoundsException unless i is between 0
and size() -1.

